

FOOD MICROBIOLOGY

WHAT IS FOOD MICROBIOLOGY???

A Brief History

Early Food Preservation
900 AD – "Food Poisoning" Recognized
1795-Appert Developed Canning
1854-1864-FOOD MICROBIOLOGY BECOMES A SCIENCE
Louis Pasteur

Why Study Food Microbiology?

Provide Clean, Safe, Healthful Food to Consumer

Food Permits Growth

Control of Microbial Growth

Prevent Food Spoilage

Prevent Food-borne Illnesses

Food Preservation and Production

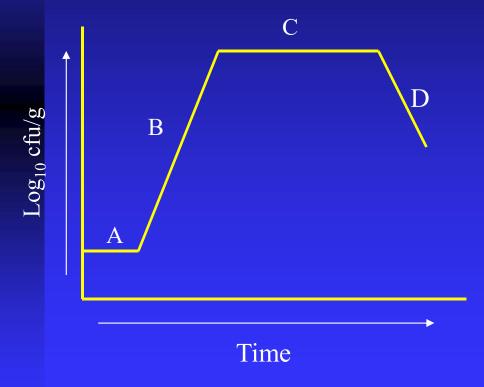
Food-Borne Illness

ERS Estimates
\$6.9 Billion/Year Cost of FBI
CDC Estimates
76 Million Cases of FBI Annually
325,000 Hospitalizations
\$,000 Deaths

What Organism Causes the Most Cases of Food-Borne Illness Annually? What Organism Causes the Most Deaths Due to Food-Borne Illness?

Review of Microbiology

Mostly Single Celled
Groups
Morphologies
Gram Reactions
Size
Growth Rate


Exponential Growth

30 Minute Generation Time

- Time 0 1000/g
- ◆ 30 min 2000/g
- ◆1 hour 4000/g
- **♦**
- ♦ 5 hours 1,000,000/g

Microbial Growth Phases

A=Lag Phase B=Log/Exponential Phase C= Stationary Phae D= Death Phase

Intrinsic and Extrinsic Factors

Intrinsic

- ♦ pH
- Moisture Content
- Oxidation-reduction Potential
- Nutrient Content
- Antimicrobial Constituents
- Biological Structures

pН

Effects of pH

- ♦ Enzymes
- ♦ Nutrients

Other Environmental Factors

- ♦ Temperature
- ♦ Salt
- ♦ Age

No known pathogen grows below pH of 4.6

♦ Clostridium botulinum

Moisture

Remove and/or Bind Moisture

- ♦ Humectants
- Dehydration
- Water Activity Aw
- Most Fresh Foods Aw > 0.99

Microbial Growth and Aw

Halophilic 0.75
Xerophilic molds 0.61
Osmophilic yeasts 0.61

Lowest Aw for Pathogen Growth
 0.86

Stapholococcus aureus

Oxidation- Reduction Potential

O/R Potential - Eh

- "...ease with which the substrate loses or gains electrons."
- Loss of electrons oxidized
- Gain of electrons reduced
- Aerobic
- Anaerobic
- Microaerobic
- Facultative anaerobes

Others

Nutrients ♦ Fastidius vs non-fastidious Biological Structure Antimicrobial Factors Naturally occurring factors

Extrinsic Factors

Temperature
Relative Humidity
Gases in the Environment
Presence of Other Microorganisms

Temperature

Microorganisms grow over a wide range of Temperatures
Psychrotrophs
Mesophiles
Thermophiles
Psychroduric
Thermoduric

Other Factors

Relative Humidity of Environment
Can change the Aw
Environmental Gasses
CO₂, Ozone,


Presence of Other Microorganisms

Competitive Exclusion
 General microbial antagonism
 Lactic Antagonism

Hurdle Concept

Combine Intrinsic and Extrinsic Factors to Control Microbial Growth

 Combination requires less severe treatments to foods to get desired inhibition

Food Microbiology Microorganisms as causative agents of disease in Humans--Foodbourne pathogens **Microorganisms and Food spoilage Microorganisms as Food sources Microorganisms exploited for the** production of food **Microbes and Agriculture**

What is microbiology

Study of Micro-organisms: Organisms that *EXIST* **as** *Single Cells* **or cell clusters and must be viewed individually with the aid of a Microscope**

1. *EXIST* (Webster definition)To continue to be, have life; live

HALLMARKS OF LIFE

- 1. METABOLISM
- 2. DIFFERENTIATION
- 3. **REPRODUCTION**
- 4. COMMUNICATION
- 5. EVOLUTION

2. KEYWORD single **CELLS**(OR cell clusters)

CHARACTERISTICS THAT MICROORGANISMS HAVE THAT MAKE THEM TRUE CELLS

- 1. CELL MEMBRANE –barrier that separates the inside of the cell from the outside
- 2. NUCLEUS OR NUCLEIOD location of genetic information (DNA)
- **3. CYTOPLASM** –location of the machinery for cell growth and function
- 4. MACROMOLECULES proteins, nucleic acids, lipids, polysaccharides

3. KEYWORD exist as **SINGLE** cells (OR cell clusters)

We are multicellular creatures—made up of many cells

What makes one of our cells different from a TRUE microbial cell??

A single microbial cell can have an independent existence—our cells need to other cells in order to carry out their cellular functions

What organisms are studied in food microbiology

- 1. BACTERIA—*
- 2. FUNGI—molds and yeasts *
- 3. ALGAE—dinoflagellates/shellfish *
- 4. PROTOZOA—amoeba, Giardia *
- 5. Viruses—Hepatitis/shellfish
- 6. Prions
- 7. Helminths—worms
- * TRUE microbial cells

Taxonomy

The study of **phylogenetic** relationships between organisms (*The sorting of all living things based on their related or differentiating features*)

KINDOM the highest level in classification
PHYLUM related classes
CLASS related orders
ORDER related families
FAMILY related genera
GENUS closely related species
SPECIES organisms sharing a set of biological traits and reproducing only with their exact kind

Further classifications especially with bacteria and yeasts Strain—organisms within a species varying in a given quality Type—organisms within a species varying immunologically

Genus, Species, Strain and Type

All living organisms have a first name and a second name: The first name is always capitalized (Genus) The second name is always denoted in lower case letters (species) Both names are always *italicized* or <u>underlined</u>

Example

Lauren brandon or <u>Lauren brandon</u>

Strain refers to a genetic change made in an organism that makes it different from the predominant species organism

Type refers to surface changes that make the organisms distinguish able from others of its species

Scope of study in Food Microbiology

- **1. BACTERIA--bacteriology**
- 2. FUNGI--mycology
- 3. PROTOZOA—parasitology
- 4. ALGAE
- 5. VIRUSES--virology (although not a cellular entity but an intracellular parasite)
- 6. WORMS—parasitology (helminthology) -- not true microorganisms—but included in food/medical microbiology
- 7. **PRIONS**—pathogenic neural derived proteins
- 8. EPIDEMIOLOGY—study of the source and prevalence of disease

Why study Food Microbiology??

Microorganisms as causative agents of disease in humans--foodbourne pathogens

Microorganisms and food spoilage

Microorganisms as food sources

Microorganisms exploited for the production of food

Microbes and Agriculture

Agents of Disease (Foodbourne Pathogens)

BACTERIA *E coli* O157:H7, *Salmonella* spp., *Vibrio cholera*, *Bacillus cereus*, *Clostridium botulinum*, *Listeria monocytogenes*, *Staphylococcus aureus*

VIRUSES Enteroviruses, Norwalk virus, Hepatitis virus

PRIONS Mad Cow Disease (BSE) and Creutzfeldt-Jakob Disease

PROTOZOA Giardia lamblia, Cryptosporidium parvum, Entamoeba histolyticum, Cyclospora cayetanesis

HELMINTHS Tapeworms (Beef, Fish and Pork), Flukes (Fish and Shellfish), Roundworms and Hookworms

Food Spoilage

Fungi—Bread and Cheese Mold

Bacteria—*Erwinia caratova* soft rot in carrots and cucumbers

some Yeasts

Microbes we can eat

Fungi: Mushrooms are actually a microorganism— although the fruiting body is macroscopic!!!

Yeasts: Vegemite (Yeast Paste)

Bacteria: Spirulina platensis (a cyanobacterium)

Algae: Chlorella (fresh water), Dunaliella (salt water)

Microbes that we can exploit

Bacteria—cheese, yogurt, vinegar, bread and sauerkraut production

Yeasts—bread, beer, liqueurs, wine

Molds--cheeses

Bacteria in agriculture

Rhizobium spp: Nitrogen fixation in root nodules of legumes alfalfa etc.

Bacteria used in engineering produce that is resistant to adverse environmental conditions, pests pathogens and spoilage